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Abstract. For the Hubbard model with infinite-range hopping, a sensible compe- 
tition between hopping and Hubbard repulsion can only he found when U/t sca le  
with the volume of the system. Only two electrons carry all the kinetic energy and 
so the variations in Hubbard repulsion are bounded by only Ztr for sn eigenstate. 
To be comparable with the kinetic energy this must be extensive. For this -e we 
derive some exact eigenstates for the model. Our Lowest energy solution is p a r a m e  
netic although the spin degeneracy energy scale is very smal l .  The behaviour of this 
system appears to be very different to that for the shorter-range hopping system 
and so little can be deduced about more physical models. 

1. Introduction 

Exact solutions to unphysical limits of interesting Hamiltonians often yield insight 
into the more physical regimes. Provided that the physical phenomena present in 
the unphysical limit are pertinent to the real physical problem, any real ground-state 
coherence may well have a transparent analogue in the unphysical system. One such 
unphysical limit is the classical limit of the Heisenberg model. This limit yields long 
range magnetic order which appears relevant to all but the most exotic quantum 
systems. 

Perhaps the simplest model for correlated charge motion is the Hubbard 
model: 

where cl, creates an electron of spin U (complementary spin 5 )  on a site i. This 
model has proven immensely difficult to  solve in the strongly correlated limit where 
the Hubbard repulsion, U, dominates the chemical bonding or hopping energy, t .  In 
this article we will study an unphysical but rather simple limit of this model: the 
infinite-range hopping limit, when tii, = t and we have an equal matrix element for 
hopping to allsites (including no motion, i = 8). 

We are not the first to study this model [l] but we seem to be the first to have 
noticed that a competition between the two contributions can only be observed if 
the Hubbard repulsion is chosen to be extensive: U / t  scales with the volume of the 
system. We will use N to denote the number of atoms in the problem and this will be 

09S3-8984/91/193273+ll$M.50 @ 1991 IOP Publishing Ltd 3273 



3274 M U’ Long 

our extensive variable. The basic reason for choosing the Hubbard repulsion to be so 
large, is that  a t  any one time there are only two mobile electrons in the system. Only 
these two electrons can alter the number of doubly occupied sites and so the variations 
in Hubbard energy are bounded by 2U.  Only if this energy is comparable with the 
hopping energy will i t  be relevant and so we must make it extensive. Although this 
choice ensures that the model exhibits some non-trivial behaviour, it does extend the 
range of energies over values which scale with the square of the volume of the system. 
States with significantly different numbers of doubly occupied sites are therefore well 
separated in energy. 

Given that  the fluctuations in double occupation are necessarily small, which phe- 
nomena of the physical model might have a remnant in the unphysical model? The 
most obvious questions relate to the spin coherence and the possible magnetic phase 
diagram. There are various types of magnetic state proposed for the ground state of 
the Hubbard model as the parameters are varied: Ndel antiferromagnetism [Z], Na- 
gaoka ferromagnetism (31, Kanamori paramagnetism [4] and elementary Fermi liquid 
theory a t  weak coupling [5]. We will be concerned mainly with interpretations of the 
magnetism in our solutions and the physical cause of any spin-degeneracy breaking. 

One major complication encountered in studying the physical Hubbard model is 
that the spin correlations in the vicinity of the charge carrier can be rather different 
from the spin correlations further away, a sptn polaron. This effect is caused by a 
competition between two types of behaviour; Nagaoh ferromagnetism near the charge 
carrier and Heisenberg correlations at  larger distances, for example. For the infinite- 
range hopping model, there cannot be such a length scale because two electrons are 
either on the same site or on different sites and there is no sense in which sites may 
be thought of as ‘nearby’. This simplification makes the model analytically tractable 
but it may simultaneously eliminate the interesting physics This will be one of the 
dominant considerations in our conclusions. 

In section 2 we will develop some solutions to the Hamiltonian and in section 3 
we will try to interpret the physical effects which lead to the stabilization of the spin 
correlations. In section 4 we conclude. 

2. Some exact solutions 

In this section we will develop some eigenstates of the infinite-range Hubbard Hamilto- 
nian. Our solutions are ‘ad hoc’and based upon an understanding and generalization 
of a treatment applicable to finite systems. 

The underlying mathematical structure is the full permutation group. Only the 
uniform phase sum is invariant under this group and so the zone centre of reciprocal 
space (if we arbitrarily choose a translational subgroup) plays an important role. 
Indeed, if we extract the two states corresponding to this sum, CA, say, then the 
kinetic energy becomes very simple: 

(2.la) 

and it is very natural to consider the state cfi,c,!,,lO) in trying to construct solutions. 
I t  might seem natural to expand the states in reciprocal space, since the zone 

centre states play such a an important role but this is in fact not so. Any represen- 
tation of the other states is equally reasonable. Our only consideration, in deciding 
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upon a reasonable representation for the 'non-bonding' combinations is the Hubbard 
interaction: 

H , = U C  ciociacisci,. t t ( 2 . lb )  

Since the Hubbard interaction is local in real space it seems natural to expand the 
non-bonding states in terms of short-range orbitals in real space. 

An electron localized on a single atom is not orthogonal to the zone-centre states, 
and so we are forced to consider states spread across at least two atoms. If we use (I 
as a pair label, describing collectively the two atoms {ia,ja}, then the operator: 

i 

do = ( I / @ )  [cmteo - C f J  (2.2) 

creates an electron of spin U on the pair of atoms denoted by (I which is in a state 
orthogonal to the zone-centre states. We will use states constructed in this way. 

I t  is clear that  our chosen states are not all mutually orthogonal, since any two 
pairs with a common atom yield non-orthogonal states. Furthermore, our basis is 
rather difficult to complete, since there are N ( N  - 1) /2  ways to pair up atoms and 
only N - 1 distinct non-bonding orbitals for each spin. The reason for our arbitrary 
choice is that  there remains a huge spatial degeneracy for the eigenstates that  we 
construct. I t  happens to be more convenient t o  work with the local description and 
more exotic eigenstates can always be constructed by linear superposition. 

The manner in which we enforce orthogonality is by choosing all our pairs to 
involve distinct atoms. Obviously we can only successfully describe doping levels up 
to a quarter filling with this constraint. 

The second natural operator to emerge once we have chosen our local basis is: 

which creates the local configurations where the pair, (I, finds one of its atoms doubly 
occupied, when the non-bonding electron is joined by a zonecentre electron. 

The action of the Hamiltonian on this choice of basis is detailed by observing that: 

H o a ~ , c ~ t  cAl 10) = -2NlaL,~&c!,~ 10) 

U U 
JN O0 N 

X~U&,,CLTCA~IO) = - -b t  ct 10) + - ~ U L ~ C ~ ~ C / ~ I O )  

U 
H o a ~ , c ~ , l O )  = -NtaL,ci,10) HlaLoci,lO) = -ubL10) 

(2.4) 
J N  

H, p b L c i , l O )  1 = - tN p b L c i ,  1 10) + t u ~ , ~ ~ ~ c f i ~  10) 
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We are now in a position to construct some eigenstates of the Aubbard Hamilto- 
nian. We start out with a non-interacting eigenstate and determine the subspace that 
the Hamiltonian can generate. We choose the state: 

(2.50) 

where C = (ul,u2, .., U*,  . . ,aNm) are the spins of the N ,  non-bonding electrons, S, 
defines the spin wavefunction that we must determine and A;,* = aL,.eL in t e r m  of 
a fermionic operator c!. The operators c! constitute a technical trick which enables 
us to define operators A t o m  that commute with each other, obviating minus sign 
complications. The reader is reminded that the pairs are chosen to be mutually 
distinct and therefore that N ,  < N/2. 

Our task is to apply the Hamiltonian again and again until a complete subspace 
is generated. At first sight one might suppose that we would generate an infinite 
subspace but this is not so. There are only two delocalized electrons and only these 
two electrons can doubly occupy a t o m  in low energy eigenstates. Provided that we 
can successfully describe the spin degrees of freedom of states with u p  to two doubly 
occupied sites, then we ought to be able to solve the problem. 

The first application of the Hamiltonian produces states where one pair has an 
atom which is necessarily doubly occupied: 

H M O )  = -2Ntl11,) + U 4 0 )  - Vl11l) (2.56) 

The first contribution is just the kinetic energy of the two delocalized electrons. The 
second term comes from the situations where both zone-centre electrons are on the 
same site and the third term comes from the situations where one of the zone-centre 
electrons resides on the same atom as a non-bonding electron. We find that: 

(2.6a) 
1. s 01 i 

is the contribution where both of the zone-centre electrons are on the same site and: 

(2.7a) 

is the Contribution that involves a doubly occupied atom in the pair denoted by p .  

trons can delocalize again: 
The state 14,) is simple because all that can happen is that the zone-centre elec- 

4 4 0 )  = N o )  - 24110) (2.66) 

where the first term accounts for the doubly occupied site and the second term comes 
from the electrons delocalizing. An application of the Hamiltonian to 111,) produces: 

(2 .7b )  

where the first term finds the zone-centre electron on the same site as a non-bonding 
electron delocalizing again. The second term is the kinetic energy of the remaining 

HI$,) = Natl11o) + (U - Nt)lrli) - Ul112) 
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sone-centre electron together with the penalty for the doubly occupied site and the 
third term arises from the probability that the second zone-centre electron resides on 
the same atom as a second non-bonding electron. The new state is: 

(2.8a) 

which now has two doubly occupied sites and no zone-centre electrons. The form 
of this state is the most general, since the only mobile electrons are situated on the 
doubly occupied atoms, and if they move they become Bone-centre electrons again 
taking us back to a state with a similar form to 

There are some subtleties associated with I&,) these being the spin degrees of 
freedom. The sum of pairs involved in I&) are over antiparallel spins. If all the 
non-bonding electrons had parallel spins, then I&,) would vanish and the complete 
situation would be described by I+,,), I&) and I+J. The combinations relevant to 
I&) are those for which the two original spins were in a total spin singlet. The 
operators b: create singlet pairs of electrons, and so there is a sense in which the 
original spins might be thought of as erchanging. 

Applying the Hamiltonian to the state I&) yields: 

W + Z )  = 2(11!b2) + tlli,) (2.86) 

where the first term describes the penalty against finding lwo atoms doubly occupied 
and the second term comes from the delocalization of one of the four electrons that 
are on doubly occupied atoms. It is now possible for an electron which was originally 
a non-bonding electron to delocalize leaving the original zonecentre electron in a 
non-bonding orbital in its place. It is this type of exchange that controls the spin 
degeneracy breaking. The new state is: 

and now the spin exchange has  become transparent. Provided that the two original 
spins were antiparallel, the contributions involve only a simple permutation of the spin 
indices. We can rewrite this expression allowing the spin permutation to act on the 
spin wavefunction. 

We can now extract the spin dependence in the form of Heisenberg operators by 
rewriting: 

with 

(2.10~) 

(2.11a) 
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in terms of PP., which permutes ufl and u7 and the spin operators SP which act on 
an equivalent Heisenberg representation. It is straightforward to show that: 

Hp = N, + 2 - 450 9 STotal (2.116) 

where STOtd = E, S, is the total spin operator. We can now observe that if the 
total spin of the state vanishes then the subspace has already closed, since STotal H 0, 
HP H N ,  + 2 is independent of P and so &) = (No  + 2)/$J. 

If the total spin does not vanish then, in general, the HP are distinct and I&) is 
in turn distinct from I&). 

The Hamiltonian applied to I & )  yields: 

Hlqi) = (U - Nt)l&,) - U/&) +tA(S)l&) (2.10b) 

where the first term includes the kinetic energy of the remaining zone-centre electron 
together with the penalty from the doubly occupied site. The second term yields 
the contribution when the second zonecentre electron doubly occupies an atom with 
a non-bonding electron and the third term corresponds to the delocalization of the 
zone-centre electron which is doubly occupying an atom. This final term finds both of 
the zone-centre electrons delocalized, but the matrix element depends strongly on the 
total spin of the state. The two zonecentre electrons must find a pair of non-bonding 
electrons in a spin singlet and the probability of finding such a pair decreases as the 
total spin of the eigenstate is increased. The matrix element is determined from the 
observation that: 

EH@ = N,(Nu+2)-4sT~t,l'sT~t,l (2.120) 
8 

A(S) = N o ( N ,  +2)  -4S(S+  1) (2.126) 

where we have assumed that we have an eigenstate of total spin S. 

is: 
The new state for which both the two zone-centre electrons doubly occupy atoms 

and the final application of the Hamiltonian yields: 

HI&) = 2u1&) + tl&) (2.136) 

where the first term is the Hubbard penalty from the two doubly occupied atoms 
and the second term is where one pf these four relevant electrons delocalizes. The 
final state I & )  is proportional to I&). The spin degrees of freedom involve another 
elementary permutation which can be written in the form: 

(2.14) 
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- + - 2 t  --U 0 0 0 -  
nt - - z + u - t  -U 0 0 
0 0 -€ + 2u t 0 

- 0 0 0 nt --z + 2u- 
t(nz - 2) 0 0 - € + u - t  -U 

where: 

[ i;i 1 = o  (2.17) 

I4lW 
I&)/N 

f i p =  C [ 1 - 4 S p . S , ]  [ 1 - 4 S p . S , ] +  c [ l - 2 ( S p + S , ) . S , ] )  
7#@ ( 6#’9,7 

(2.15) np = (N, + 2)Hp. 

In deriving the final identity we have used [I - 4Sp. S,] = 4 [l - 4Sp. S,] and 
[l - 4Sp. S,] (Sp + S,) = 0 ,  which hold for spin-f system. 

We therefore conclude that I & )  = (N, + 2)14,) and that the complete subspace 
has been generated. 

The full system of equations is: 

2 

- E  - 2Nt U -U 0 0 0 

-2t - E  + U 0 0 0 0 

N e t  0 - E + U - N t  -U 0 0 

0 0 0 - E  + 2U t 0 

t*(s) 0 0 0 - E  + U - N t  -U 
0 0 0 0 t (N ,  t 2 )  - E t  26 

3. Solutions and interpretations 

We have used the discrete formulation for finite systems to ensure that the result is 
correct by comparison with exact diagonalization. In this section we will study the 
solution to the finite density limit that is of more fundamental interest. 
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The determinant of the secular equation can be expanded into the form: 

(C - 2u) { ( E  + t -U)' [ ( e  + 2t ) (c  - 2 ~ )  + 2ntu] + t 2 ~ z ~ 2 }  = 0. (3.1) 

The solution at c = 2u is unphysical and corresponds to a situation where there are no 
zonecentre electrons. The remaining quartic equation contains the relevant solutions 
and surprisingly can be completely solved. If we reparameterize with: 

( 3 . 2 ~ )  

(3.26) 

then we find that: 

r2 [rz - 1 + 2nz] + s2zZ = o ( 3 . 3 4  

and hence that: 

(3.36) 

The corresponding wavefunction is: 

in t e r m  of the states defined in section 2. 

so it is a good approximation to expand in powers of I. We find that: 
Our solution is only known to be valid when n < 1/2, and furthermore I < 1/4, 

c = -2t + (U + t)[nz + (z2/2)(n2 + 2) + o ( ~ ~ ) ]  ( 3 . 5 4  

and so: 

c = -2-1 -t nu + (u2/2t)(s2 + n2 - 2n) + o(u3/t2) (3.56) 

as u/t H 0 and 

c = -21 + nt + (t2/2u)(sZ + n2 - ~ n )  + o(t3/u2) (3 .54  

as tJu + 0. 
The preferred magnetic state is a total spin singlet for all cases. This agrees with 

the results of Kanamori [4] for low densities of electrons in Hubbard models. However, 
the energy scale for the effect is not reminiscent of the result for the physical limits of 
the Hubbard model. For finite-range hopping, Pauli exclusion makes magnetic states 
unstable on a hopping energy scale, both in the weak coupling and strong coupling 
limits. This result occurs because all  electrons take ashare of the kinetic energy and so 
the 'exchange' of any two electrons is energetically significant. We would only obtain 
a similar result if we prohibited occupation of one of the zone-centre states, which 
would then give up half of the kinetic energy. To leading order in our calculations 
the degeneracy remains. This can be understood if we observe that whatever the spin 
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of a non-bonding electron, one of the two zone-centre electrons will be parallel to it 
and hence be Pauli excluded from being on the same atom with it. The degeneracy is 
broken at a higher order for infinite-range hopping. 

I t  is easy to see that the spin degeneracy breaking requires a contribution from 
the situation where both zone-centre electrons are localized on pairs with non-bonding 
electrons. When only one electron becomes ‘localized’, it originates from the state with 
the opposite spin to the remaining ‘delocalized’ electron and can always delocalize back 
again; there is no intrinsic spin restriction. 

The degeneracy breaking is best understood in the strong-coupling regime, by 
considering two pairs of atoms with four electrons on them. Since the number of 
non-bonding electrons is macroscopic, there is a finite probability of finding two pairs 
of atoms doubly occupied, with both the zone-centre electrons on the unoccupied 
atom of the pair. This probability is sizeable even as U c 00, since there is no 
implied double occupancy of an atom, only a pair. If we focus on one pair of atoms, 
then the two electrons necessarily have parallel spins; this is a symmetry requirement 
based upon the necessity for one non-bonding and one bonding orbital being occupied. 
Each mobile electron can hop to each other occupied atom in principle but in practice 
the electrons can only hop into states in which they arrive in a spin singlet with the 
electron already present. The cause of the spin-degeneracy breaking can be traced to 
the correlations between the electrons. For non-interacting electrons the spin of the 
zonecentre electron is conserved: 

H , ( c ~ ~ ,  - C ; ~ ~ ) ( C ~ ~ ~  + cje7)10) = - 2 t f i ( ~ ! ~ ,  - cj, ,)c~,lO) ( 3 . 6 ~ )  

whereas for highly correlated electrons for which the double occupation of atoms has 
been eliminated 

H,(cf*cc,!p, - C ~ ~ & ) ~ O )  = - t f i ( c : a c  - c,e,)c~,lO) - t d E &  - c,,,)c~,lO) 
(3.66) 

and so either electron can become the zone-centre e1ectrc.n and the spin can be ex- 
changed. Perturbative hopping onto occupied atoms is optimized in a low spin state 
for which the simultaneous probability of finding electrons in relative singlets is max- 
imized. It should be remembered that the two electrons which singly occupy the two 
atoms of a pair are necessarily in a spin triplet and so the strong singlet co r reh  
tions which enhance double-occupying hops are between pairs. The triplet character 
is enforced by the spatial antisymmetry of a nou-bonding and zone-centre pair. The 
electrons hop between triplets doubly occupying atoms. 

Perhaps the simplest way to understand our result is by observing that the cor- 
relations induced by the Hubbard interaction allow exchange between the spins on 
localized and conduction electrons. The low spin energy gain comes from passive 
singlets in the non-bonding background becoming the active singlet between the two 
delocalized electrons. This interpretation does have an analogue in physical systems. 

Non-interacting electrons are not subject to the spin-degeneracy breaking since for 
this case the spin of a zone-centre electron is conserved. Only to the extent to which 
there is an enhanced probability of finding two pairs with two singly occupied atoms 
over finding two pairs with one doubly occupied atom each is the spin degeneracy 
broken. This occurs to order uz / t  and is best interpreted as a residual strong-coupling 
interaction. 
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In the theory the relevant correlations are controlled by A small addition 
of to I&) reduces the probability of finding pairs of pairs with doubly occupied 
atoms. The configurations with all four atoms singly occupied but in a total spin 
singlet remain. For such a quartet the simultaneous probability of finding a spin on 
one pair in a singlet with a spin on the other pair is three quarters for each combination. 
This is to be compared with a simultaneous probability of one half when the total spin 
is one and zero when the total spin is two, although this eventuality is never reached. 

4. Conclusions 

We have found some exact eigenstates of the infiniterange hopping Hubbard model 
for the restricted case of less than a quarter band filling. We have not demonstrated 
that the ground state is among our solutions although we believe that it is. In order 
to obtain a remnant competition between the kinetic energy and Hubbard repulsion 
we were forced to make the Hubbard repulsion extensive. This choice is not without 
unphysical consequences but we have ignored the problems and studied the model 
with regard to its magnetic content. 

In agreement with Kanamori [4] we find that the total spin singlet is stabilized 
from amongst the magnetic possibilities. The energy scale on which it is stabilized is 
rather smaller than tba t  found in shorter-range versions of the Hubhard model. The 
source of the paramagnetism w a s  found to be directly attributable to the correlations 
between the delocalized zone-centre and localized non-bonding electrons. These cor- 
relations allow a form of strong-coupling exchange between the two types of electron 
that promotes paramagnetism. A singlet correlation between two non-bonding elec- 
trons can be turned into an additional hybridization into a state in which the singlet 
is contracted onto a single atom. In order for the phenomenon to occur both of the 
zone-centre electrons must be involved and this fact combined with the necessity of 
using a doubly occupied site ensures tbat the spin-degeneracy energy scale is small. 

The analysis presented in this article is only valid for band fillings up to a quarter. 
Numerical simulations show that it is not valid above a quarter filling. One can ask 
questions about higher band fillings and there are ways to generalize the present ideas 
to higher doping levels. This generalization is in progress and involves non-bonding 
clusters with higher values of total spin but unless a more interesting physical idea 
develops the analysis will be academic. 

The final and perhaps most important question is to ask whether the phenomena 
found in this simple but unphysical limit yield any insight into the physical systems. 
Unfortunately the solution yields very little insight. For the infinite-range hopping 
model there are two types of electrons: the mobile zonecentre electrons and the im- 
mobile non-bonding electrons. The physics of the model is dominated by the interplay 
between these two types. For the shorter-range models all electrons play a similar role 
and the physics is truely many-body. It is conceivable that this model could be used 
to study systems in which there are two types of electrons, one light and one heavy, 
both of which simultaneously have Fermi surfaces and in which all the electrons are 
subject to strong Coulomb interactions. This is perhaps a bit far fetched. 
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